Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Infect Dis ; 2022 May 25.
Article in English | MEDLINE | ID: covidwho-2234374

ABSTRACT

BACKGROUND: The Omicron variant of SARS-CoV-2 is highly transmissible in vaccinated and unvaccinated populations. The dynamics governing its establishment and propensity towards fixation (reaching 100% frequency in the SARS-CoV-2 population) in communities remain unknown. In this work, we describe the dynamics of Omicron at three institutions of higher education (IHEs) in the greater Boston area. METHODS: We use diagnostic and variant-specifying molecular assays and epidemiological analytical approaches to describe the rapid dominance of Omicron following its introduction to three IHEs with asymptomatic surveillance programs. RESULTS: We show that the establishment of Omicron at IHEs precedes that of the state and region, and that the time to fixation is shorter at IHEs (9.5-12.5 days) than in the state (14.8 days) or region. We show that the trajectory of Omicron fixation among university employees resembles that of students, with a 2-3 day delay. Finally, we compare cycle threshold (Ct) values in Omicron vs. Delta variant cases on college campuses, and identify lower viral loads among college affiliates harboring Omicron infections. CONCLUSIONS: We document the rapid takeover of the Omicron variant at IHEs, reaching near-fixation within the span of 9.5-12.5 days despite lower viral loads, on average, than the previously dominant Delta variant. These findings highlight the transmissibility of Omicron, its propensity to rapidly dominate small populations, and the ability of robust asymptomatic surveillance programs to offer early insights into the dynamics of pathogen arrival and spread.

2.
PLoS One ; 17(7): e0270694, 2022.
Article in English | MEDLINE | ID: covidwho-1933368

ABSTRACT

At our university based high throughput screening program, we test all members of our community weekly using RT-qPCR. RT-qPCR cycle threshold (CT) values are inversely proportional to the amount of viral RNA in a sample and are a proxy for viral load. We hypothesized that CT values would be higher, and thus the viral loads at the time of diagnosis would be lower, in individuals who were infected with the virus but remained asymptomatic throughout the course of the infection. We collected the N1 and N2 target gene CT values from 1633 SARS-CoV-2 positive RT-qPCR tests of individuals sampled between August 7, 2020, and March 18, 2021, at the BU Clinical Testing Laboratory. We matched this data with symptom reporting data from our clinical team. We found that asymptomatic patients had CT values significantly higher than symptomatic individuals on the day of diagnosis. Symptoms were followed by the clinical team for 10 days post the first positive test. Within the entire population, 78.1% experienced at least one symptom during surveillance by the clinical team (n = 1276/1633). Of those experiencing symptoms, the most common symptoms were nasal congestion (73%, n = 932/1276), cough (60.0%, n = 761/1276), fatigue (59.0%, n = 753/1276), and sore throat (53.1%, n = 678/1276). The least common symptoms were diarrhea (12.5%, n = 160/1276), dyspnea on exertion (DOE) (6.9%, n = 88/1276), foot or skin changes (including rash) (4.2%, n = 53/1276), and vomiting (2.1%, n = 27/1276). Presymptomatic individuals, those who were not symptomatic on the day of diagnosis but became symptomatic over the following 10 days, had CT values higher for both N1 (median = 27.1, IQR 20.2-32.9) and N2 (median = 26.6, IQR 20.1-32.8) than the symptomatic group N1 (median = 21.8, IQR 17.2-29.4) and N2 (median = 21.4, IQR 17.3-28.9) but lower than the asymptomatic group N1 (median = 29.9, IQR 23.6-35.5) and N2 (median = 30.0, IQR 23.1-35.7). This study supports the hypothesis that viral load in the anterior nares on the day of diagnosis is a measure of disease intensity at that time.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , SARS-CoV-2/genetics , Tomography, X-Ray Computed , Universities , Viral Load
3.
SLAS Technol ; 27(5): 302-311, 2022 10.
Article in English | MEDLINE | ID: covidwho-1895437

ABSTRACT

In 2019, the first cases of SARS-CoV-2 were detected in Wuhan, China, and by early 2020 the first cases were identified in the United States. SARS-CoV-2 infections increased in the US causing many states to implement stay-at-home orders and additional safety precautions to mitigate potential outbreaks. As policies changed throughout the pandemic and restrictions lifted, there was an increase in demand for COVID-19 testing which was costly, difficult to obtain, or had long turn-around times. Some academic institutions, including Boston University (BU), created an on-campus COVID-19 screening protocol as part of a plan for the safe return of students, faculty, and staff to campus with the option for in-person classes. At BU, we put together an automated high-throughput clinical testing laboratory with the capacity to run 45,000 individual tests weekly by Fall of 2020, with a purpose-built clinical testing laboratory, a multiplexed reverse transcription PCR (RT-qPCR) test, robotic instrumentation, and trained staff. There were many challenges including supply chain issues for personal protective equipment and testing materials in addition to equipment that were in high demand. The BU Clinical Testing Laboratory (CTL) was operational at the start of Fall 2020 and performed over 1 million SARS-CoV-2 PCR tests during the 2020-2021 academic year.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics/prevention & control , Real-Time Polymerase Chain Reaction/methods , United States
4.
Cell Rep Methods ; 1(1): 100005, 2021 May 24.
Article in English | MEDLINE | ID: covidwho-1169147

ABSTRACT

Asymptomatic surveillance testing together with COVID-19-related research can lead to positive SARS-CoV-2 tests resulting not from true infections, but non-infectious, non-hazardous by-products of research (amplicons). Amplicons can be widespread and persistent in lab environments and can be difficult to distinguish for true infections. We discuss prevention and mitigation strategies.

SELECTION OF CITATIONS
SEARCH DETAIL